Updates in Pompe Disease: Overview and Emerging Treatment Strategies

Overview¹⁻³

Pompe disease (aka glycogen storage disease type II [GSD II] or acid maltase deficiency [AMD]) is a rare autosomal recessive genetic disorder^{1,2}

Description

- Caused by deficiency in acid α-glycosidase (GAA)^{1,2}
- Accumulation of lysosomal glycogen, primarily affecting skeletal and cardiac muscle tissue^{1,2}

Epidemiology

- Globally, prevalence of ~1 in every 40,000 people¹
- Three-quarters of these are late onset and one-quarter are infantile¹
- African Americans and East Asians appear to be at higher risk¹

Onset

- Infantile onset
 Pompe disease
 (IOPD) before 1
 year of age²
- Late onset Pompe disease (LOPD) – between 1 year and adulthood²

Prognosis

- Varies based on onset^{1,3}
- Life expectancy of infants with IOPD is often <1 year, if untreated^{1,3}
- LOPD progresses slowly, with a life expectancy into late adulthood*,1,3

ECG, electrocardiogram; GAA, acid alpha-glucosidase; GE, gastroesophageal; MDT, multidisciplinary team. Kishnani PS, et al. *Genet Med*. 2006;8(5):267-288.

Diagnosis of Pompe Disease

Evaluation and Management of Infants With a Positive NBS for Pompe Disease 1-3

NBS positive (low GAA activity)

Peripheral blood enzyme assay

CK, chest X-ray, and ECG to identify IOPD immediately

If enzyme activity is confirmed low, perform molecular testing and urine Hex4

For infants with IOPD, molecular testing will usually provide CRIM status

IOPD

(present cardiomyopathy and elevated CK)

- Treat immediately at time of diagnosis
- Depending on CRIM status, immune modulation should be started simultaneously

LOPD

75% of patients diagnosed with PD by NBS

- · Close monitoring of symptoms
- Treat at the onset of symptoms (e.g., delayed motor development)
- · No recommendation for treatment of asymptomatic patients

CK, creatine kinase; CRIM, cross-reactive immunologic material; ECG, electrocardiogram; IOPD, infantile onset Pompe disease; LOPD, late onset Pompe disease; NBS, newborn screening; PD, Pompe disease.

1. Burton BK, et al. Int J Neonatal Screen. 2020;6(1): 4. 2. Bali DS, et al. Mol Genet Metab Rep. 2015;5:76-79. 3. Stevens D, et al. Curr Treat Options Neurol. 2022;24(11):573-588.

Developed with the expertise of Barbara K. Burton, MD, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois.

Pompe Disease: Overview and Emerging Treatment Strategies (cont.)

Clinical Features

Infantile Onset Pompe Disease (IOPD)

Symptoms: Present at birth or first few months Rapidly progressing and often fatal by 1 year of age, when untreated1

- Cardiomegaly²
- Hypotonia and rapidly progressive muscle weakness (skeletal, smooth muscles)2-4

- Cardiomyopathy and respiratory failure that can lead to death in absence of treatment3,5
- Treated patients who survive show skeletal muscle involvement similar to people with LOPD

- Hepatomegaly^{2,5}
- Feeding difficulties2,5
- Failure to thrive⁵

Infant with IOPD presenting with cardiomegaly*

Diagnostic delay of ~2.5 months^{†,6}

Quicker diagnosis when presenting with musculoskeletal/respiratory symptoms

- Photos courtesy: Dr. Ficicioalu.
- † Data as per US Pompe Registry study.
- LOPD, late onset Pompe disease
- . Toscano A, et al. Ann Transl Med. 2019;7(13):284. 2. Marsden D. Genet Med. 2005;7(2):147-150. 3. Hahn A, et al. Ann Transl Med. 2019;7(13):283. 4. Stevens D, et al. Curr Treat Options Neurol. 2022;24(11):573-588. 5. Kishnani PS, et al. Genet Med. 2006;8(5):267-288. 6. Lagler FB, et al. JIMD Rep. 2019;49(1):89-95.

Late Onset Pompe Disease (LOPD)

Symptoms: Slow progressing with variable clinical presentation

Birth

Infancy

Symptoms develop

>60 years

Patients with LOPD presenting with (a) Gower's

sign (b) Scapular winging*

Musculoskeletal presentation 1-3

- Proximal lower limb and para spinal trunk muscles weakness
- Scoliosis/scapular winging
- Gait abnormalities, muscular pain, frequent falls

Respiratory presentation^{4,5}

- Diaphragm muscle weakness
 - Reduced vital capacity/respiratory insufficiency
 - Dyspnea, impaired airway clearance

Cardiac presentation⁵

- Less common in adults
- Arrhythmia, cardiac hypertrophy

Gastrointestinal presentation^{3,6}

- Poor weight gain/maintenance
- Chewing/swallowing difficulties
- Lingual weakness

Diagnostic delay of 12 months⁷

- Variable symptom presentations and differential diagnosis
- Common misdiagnoses and referrals: limb-girdle muscular dystrophy

*Photos courtesy of Dr. Herman FM Busch, Erasmus MC, Rotterdam, the Netherlands.

1. Alejaldre A, et al. Neuromuscul Disord. 2012;22 suppl 2:S148-S154. 2. Hobson-Webb LD, et al. Clin Neurophysiol. 2011;122(11):2312-2317. 3. Cupler EJ, et al. Muscle Nerve. 2012;45(3):319-333. 4. Sixel BS, et al. J Bras Pneumol. 2017;43(1):54-59.5. Toscano A, et al. Ann Transl Med. 2019;7(13):284. 6. Hobson-Webb LD, et al. Neuromuscul Disord. 2013;23(4):319-323.7. Lévesque S, et al. Orphanet J Rare Dis. 2016;11:8.

Developed with the expertise of Barbara K. Burton, MD, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois.

Last Reviewed: February 2024 Page 2 of 5

Pompe Disease: Overview and Emerging Treatment Strategies (cont.)

MDT to Address Multisystem Manifestation of Pompe Disease

Cardiology

- · Periodic X-ray/ECG
- · Monitor fluid status
- · Monitor arrhythmias

Respiratory

- Respiratory function assessment asleep and awake
- · Airway clearance
- Supplemental oxygen

Physiotherapy and Neurology

- Screen for osteopenia
- Monitor cardiorespiratory status
- Enhance muscle function
- Motor and functional assessments

Gastroenterology and Nutrition

- Evaluate for GE reflux
- Oral stimulation for nonoral feeder infants
- Monitor growth and provide adequate nutrition care

Genetic Counselors

- Genetic counseling to all parents with a child with Pompe disease
- Determine the GAA mutations

ECG, electrocardiogram; GAA, acid alpha-glucosidase; GE, gastroesophageal; MDT, multidisciplinary team. Kishnani PS, et al. *Genet Med.* 2006;8(5):267-288.

Current Treatments: ERT

Approved in 2006

Indicated for patients with Pompe disease

Patients with IOPD:

- · Improvement in cardiac function and stabilization or improvements in growth parameters
- Moderate improvement in mobility and pulmonary function for first 1-2 years of treatment, followed by variable period of stability and slow decline thereafter
- Patients who develop high and sustained IgG antibody titers, including CRIM-negative patients may experience reduced clinical alglucosidase alfa treatment efficacy

Patients with LOPD:

Moderate improvement in mobility and pulmonary function

CRIM, cross-reactive immunologic material; ERT, enzyme replacement therapy; IgG, immunoglobulin G; IOPD, infantile onset Pompe disease; LOPD, late onset Pompe disease.

1. Myozyme® (alglucosidase alfa) [summary of product characteristics]. Amsterdam, the Netherlands: Sanofi B.V; February 2011. 2. Lumizyme (alglucosidase alfa) [product information]. Cambridge, MA:

Genzyme Corporation; May 2022

Alglucosidase alfa1,2

Developed with the expertise of Barbara K. Burton, MD, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois.

Last Reviewed: February 2024

Page 3 of 5

Pompe Disease: Overview and Emerging Treatment Strategies (cont.)

New Treatments

Enriched glycosylation (i.e., bis-M6P) allowing greater entry into skeletal muscle through M6P receptors^{1,2}

Avalglucosidase alfa[†]

Approved in 2021

Indicated for patients with LOPD ages ≥1 year

COMET, a phase 3 randomized, double-blind clinical trial, followed by OLE assessing safety and efficacy of avalglucosidase alfa vs. rhGAA (NCT02782741)

 Patients diagnosed with LOPD, ERT-naïve, and ≥3 years old, (N=100, median age: 49 years [range 16-78])

Cipaglucosidase alfa²

+ miglustat*,3

*chaperone designed to prolong half-life in circulation3

Approved in 2023

Indicated for adults with LOPD who are not improving on their current ERT

PROPEL, a phase 3 randomized, double-blind clinical trial, followed by OLE assessing safety and efficacy of cipaglucosidase alfa plus miglustat vs. rhGAA plus placebo (NCT03729362)

 Patients diagnosed with LOPD, ERT- experienced or -naïve, and ≥18 years old, (N=123, mean age: 47 years old [range 19-74 years old])

Avalglucosidase alfa, and cipaglucosidase alfa in combination with miglustat are currently evaluated in clinical trials for the treatment of patients with IOPD (NCT03019406 - Mini-COMET, NCT04910776 - Baby-COMET, NCT04808505 - ROSSELLA)4-7

ERT, enzyme replacement therapy; IOPD, infantile onset Pompe disease; LOPD, late onset Pompe disease; OLE, open-label extension; rhGAA, recombinant human acid alpha-glucosidase.

1. NEXVIAZYME® (avalglucosidase alfa-atga) [prescribing information]. Cambridge, MA: Genzyme Corporation; September 2023. 2. POMBILITI™ (cipaglucosidase alfa-atga) [prescribing information]. Philadelphia, PA: Amicus Therapeutics US, LLC; September 2023. 3. OPFOLDA™ (miglustat) [prescribing information]. Philadelphia, PA: Amicus Therapeutics US, LLC; September 2023. 4. https://www.sanofi.com/en/our-science/our-pipeline.5. https://www.sanofi.com/en/our-science/our-pipeline.5. https://clinicaltrials.gov/study/NCT03019406. 8. https://clinicaltrials.gov/study/NCT04910776.7. https://clinicaltrials.gov/study/NCT04910776.7.

LOPD Treatment Pipeline¹⁻⁷ Phase 1 Phase 3 Phase 2 (NCT05249621) Glycogen synthase 1 Healthy volunteers MZF001 (Maze Therapeutics)1-3 (GYS1) inhibitor Reduction in glycogen levels in mononuclear (oral) cells and muscle in healthy volunteer No safety issues (NCT06109948) ABX1100 CD71 receptor-binding (Aro Therapeutics)1,4 Healthy volunteers Centyrin conjugated (monthly IV infusion) to GYS1 specific siRNA · Results anticipated in 2024 Phase 3 Phase 1/2 SPK-3006 Liver-directed AAV RESOLUTE trial (NCT04093349) (Spark Therapeutics)1,5 gene therapy adults with LOPD ACTUS-101 Liver-directed AAV ACTUS-101 trial (NCT03533673) (Asklepios gene therapy adults with LOPD Biopharmaceutical)1,6 Muscle-directed AAV FORTIS trial (NCT04174105) AT845 (Astellas Gene Therapies)1,7 adults with LOPD GYS inhibitor Gene therapy

8. https://resolutestudy.com/pompe-healthcare-providers.html

^{1.} Bolano-Diaz C, et al. Ther Clin Risk Manag. 2022;18:1099-1115.2. https://pompediseasenews.com/news/pompe-disease-treatment-mze001-shows-promise-phase-1-trial/. 3.. https://clinicaltrials.gov/study/NCT05249621.

^{4.} https://clinicaltrials.gov/study/NCT06109948. 5. https://clinicaltrials.gov/study/NCT04093349. 6. https://clinicaltrials.gov/study/NCT03533673. 7. https://clinicaltrials.gov/study/NCT04174105

Pompe Disease: Overview and Emerging Treatment Strategies (cont.)

Resources and Additional Reading

May 2006 · Vol. 8 · No. 5

ACMG Practice Guideline

Management Guidelines¹

Pompe disease diagnosis and management guideline

ACMG Work Group on Management of Pompe Disease: Priya S. Kishnani, MD¹, Robert D. Steiner, MD (Chair)², Deeksha Bali, PhD¹, Kenneth Berger, MD³, Barry J. Byrne, MD, PhD⁴, Laura Case, PT, DPT¹, John F. Crowley, JD, MBA⁵, Steven Downs, MD⁶, R. Rodney Howell, MD⁷, Richard M. Kravitz, MD¹, Joanne Mackey, CPNA¹, Deborah Marsden, MBBS⁸, Anna Maria Martins, MD⁹, David S. Millington, PhD¹, Marc Nicolino, MD, PhD¹⁰, Gwen O'Grady, MA¹, Marc C. Patterson, MD, FRACP¹¹, David M. Rapoport, MD¹², Alfred Slonim, MD¹³, Carolyn T. Spencer, MD⁴, Cynthia J. Tifft, MD, PhD¹⁴, and Michael S. Watson, PhD¹⁵

1. Kishnani PS, et al. Genet Med. 2006;8(5):267-288.

Health Organizations

International Pompe Association

Association for glycogen storage disease

GARD

MDA

View the companion mini-webinar here

Developed with the expertise of Barbara K. Burton, MD, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois.

